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Acceptance ratio method, which has been used to calculate the depletion potential in binary hard-sphere mixtures,

is extended to the computation of the depletion potential of non-rigid particle systems. The repulsive part of the

Lennard–Jones pair potential is used as the direct pair potential between the non-rigid particles. The depletion potential

between two big spheres immersed in a suspension of small spheres is determined with the acceptance ratio method

through the application of Monte Carlo simulation. In order to check the validity of this method, our results are

compared with those obtained by the Asakura–Oosawa approximation, and by Varial expansion approach, and by

molecular dynamics simulation. The total effective potential and the depth of its potential well are computed for

various softness parameters of the direct pair potential.
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1. Introduction

Colloidal suspensions, commonly referred to sim-

ply as colloids, are the complex fluids composed of

mesoscopic particles dispersed in a solvent of mi-

croscopic particles.[1,2] Colloids have widespread in-

dustrial and biological applications in nanostrutured

materials, including paints, coatings, inks, and drug

carriers.[3] The stability of colloidal suspensions, which

is very important during these applications, has been

intensively studied in the past decades.[4−9] The un-

derstanding of the stability and the equilibrium phase

behaviours relies on a fundamental knowledge of the

effective inter-particle interactions which are a com-

bination of direct interactions (such as electrostatic

forces) with indirect interactions mediated through

the solvent and the other solute particles.[4−6] Hard-

sphere colloids dispersed in a solvent provide a sim-

ple model system for the study of fundamental ques-

tions in colloidal systems. In the hard-sphere suspen-

sions, the typical indirect potential is the depletion

potential. The first successful model to describe the

depletion effects was developed by Asakura and Oo-

sawa in 1954.[10,11] This model shows that there is

an attractive depletion interaction between two plates

immersed in a solution of polymers, and the attrac-

tive range is about twice as large as the radius of

gyration, Rg, of the polymer. Later, the same au-

thors, and independently Vrij,[12] derived a depletion

potential between two hard spheres by approximat-

ing the ideal polymers as penetrable spheres with Rg.

The phase behaviour of colloid-polymer mixtures has

been investigated by using a hard-sphere perturbation

theory with the depletion potential obtained by this

Asakura–Oosawa (AO) model.[13,14]

Binary hard-sphere mixtures, as a standard refer-

ence system for determining the properties of more

realistic models of mixtures of simple (atomic) flu-

ids, of colloids and polymers, and of other colloidal

systems, have attracted much attention. The phase

behaviours of asymmetric hard-sphere mixtures are

more complicated than those of identical hard-sphere

system.[4−6,15,16] When studying the phase behaviours

and the structure of asymmetric binary hard-sphere

mixtures, Dijkstra et al.[4−6] derived a formal expres-

sion for the effective Hamiltonian of the large spheres

by integrating out the degrees of freedom of the small

spheres in the partition function. The prediction

of phase behaviours has been justified by comparing

with those from the simulations of the true binary

mixture.[7] When the binary system is reduced into an

effective one-component system according to this way,
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the main task is to determine the depletion potential

between two big spheres immersed in a fluid of small

spheres. This additive mixtures of hard spheres are

different from colloid-polymer mixtures which are usu-

ally treated by a model under the assumption of ideal

polymer–polymer interactions (hard-sphere diameters

are nonadditive).[17,18] The AO model, which gives the

depletion potential between two colloidal spheres in a

solution of polymers with a reasonable accuracy, can

give only an approximate depletion potential to the

first order of the density of small spheres in the hard-

sphere mixtures, which is also termed AO approxima-

tion (or ideal-gas approximation).

Understanding of depletion potentials is not only

relevant to bulk phase behaviour, but also of intrin-

sic interest. In recent years, the depletion interac-

tions in binary hard-sphere mixtures have been in-

tensively investigated in both experiment and theory.

In experiment, a variety of techniques, such as video

microscopy[19] and optical tweezer techniques,[20,21]

have been used to determine depletion forces in bi-

nary hard-sphere mixtures. In theory, the density

functional[22] approach based on the Rosenfeld fun-

damental measures functional[23,24] has been proved

very efficient and highly accurate when it is used

to calculate the depletion potential in binary hard-

sphere mixtures. In addition, there are a few semi-

analytical approaches available. In these approaches,

the depletion potential between two big spheres is

determined by the effective direct correlation func-

tion of the big spheres which can be estimated

with Virial expansion approximation[6,25,26] or inte-

gral equation method[27−29] in the Percus Yevick (PY)

approximation,[30] or hypernetted chain (HPC) ap-

proximation, or other approximations.[31,32]

Computer simulation, as a complementary

method to experimental and theoretical measure-

ments, has been widely used to calculate depletion

potential. Owing to the rapid development in com-

puter technology, computer simulations become more

and more important in research. Two main sim-

ulating techniques, molecular dynamics (MD) and

Monte Carlo (MC) simulations, are applicable for the

computation of depletion potentials.[26−28,33,34] It is

straightforward to compute the depletion force act-

ing on the big sphere surrounded by small spheres

in MD simulations.[26,27,35,36] For hard-sphere binary

systems, the depletion force can be obtained by inte-

grating the contact density profiles of small spheres

around the big spheres, and the density profiles can

be estimated in MC simulations.[28] However, inac-

curacies can be introduced by extrapolation which is

usually used to determine the contact density pro-

files. Another approach to the determination of de-

pletion interactions by means of MC simulations is

acceptance ratio method (ARM) developed by Li and

Ma.[34] In our previous studies,[34,37−40] it has been

proven very efficient for calculating depletion poten-

tials in binary hard-core colloids including nonspheri-

cal colloidal systems.[41] It has also been used to calcu-

late the depletion potential in geometrically confined

binary colloids by Xiao et al.[42] and Guo et al.[43]

In more realistic colloidal systems, the direct in-

teractions among colloids are not simple hard-core

interactions. Coulombic forces, van der Waals at-

tractions, and other interactions are generally present

in colloids. The changes of effective interactions,

which are sensitive to the direct interactions, signif-

icantly influence the phase behaviours of the binary

mixtures.[26,44,45] In recent years, there have been

more and more attempts to go beyond pure depletion

effects by including non-rigid direct interactions be-

tween the particles of a binary mixture.[26,44−50] The

depletion effect in non-rigid mixtures is very different

from that in the hard-sphere mixtures. For example,

Walz and Sharma[46] calculated the depletion force be-

tween two charged spheres in a solution of charged

spherical macromolecules. They found that the pres-

ence of the long-range electrostatic repulsion increases

significantly both the magnitude and the range of the

depletion effect. Very recently, the similar character-

istics were also seen in the soft repulsive-sphere binary

mixtures by Cinacchi et al.[26] The adding of non-rigid

direct interactions enriches the physics in the binary

mixtures. However, it also increases the complexity in

the computation of the effective potential.

For non-rigid colloidal mixtures, there is no ap-

propriate density functional for the approach proposed

by Roth et al.[22] The Virial expansion theory is an al-

ternative option which provides a perturbative expan-

sion for the depletion potential in powers of the par-

ticle density.[6,25,26] As higher order Virial expansion

requires the evaluation of multidimensional integrals

which is very time-consuming for high accuracy in nu-

merical procedure, usually the second-order Virial ap-

proximation is implemented,[26] and therefore the ac-

curacy of the Virial approximation is limited. Even

though the accuracy is limited, Virial expansion as a

semi-analytical approach is very useful to guide the

measurements of experiments and simulations. When
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no accurate theoretical method is available, computer

simulation can act as an important role. In the case

of calculating depletion forces, MD simulation does

not rely on the direct potentials in the binary mix-

tures, and can accurately calculate depletion forces

within statistical errors for any particle density lower

than the critical crystalization density.[26,35,36] How-

ever, the calculation of depletion interactions is not a

dynamic process, it is not necessary to use MD sim-

ulation which requires the integrating of the equation

of motion which is time costly.

ARM, which has been implemented to calculate

the depletion potential by means of MC simulations,

can be readily extended to non-rigid particle systems.

In this article, the implementation of ARM in MC sim-

ulation for the calculating of the depletion potential

in the binary repulsive colloidal mixtures is presented.

The rest of the article is arranged as follows. In Sec-

tion 2 we describe the acceptance ratio method and its

implementation in MC simulations for non-rigid parti-

cle systems. In this section, the AO approximation for

non-rigid colloidal mixtures is also briefly described.

The results of the depletion potential obtained by the

ARM are presented as well as the comparisons be-

tween them and other results obtained by Virial ex-

pansion approach and MD simulation in Ref. [26] are

given in Section 3. In Section 4 our results as well as

the comparisons between our results and those from

other methods are presented.

2. Theory and model

2.1.Acceptance ratio method and its

implementation

In order to check the validity of our method, the

similar binary non-rigid particle mixtures considered

in this work are used as those in Ref. [26] for the con-

venience of comparing our results with theirs. The

direct inter-particle potential is given by

uij(r) =

 4ϵij
[
(σij/r)

2n − (σij/r)
n + 1/4

]
, r ≤ 21/nσij ,

0, r > 21/nσij ,
(1)

where ϵij and σij (i, j = b, s) are the energy and

the range parameter, respectively, r is the distance be-

tween two interacting particles, n is the measure of the

softness of the interactions, and the limit of n → ∞
refers to the hard-sphere. When n = 6, the pair poten-

tial is the repulsive part of the familiar Lennard–Jones

potential.

The acceptance ratio method was first proposed

by Bennett,[51] and it is a very powerful method of de-

termining free energy from simulations. Following its

implementation in hard-sphere binary mixtures, we

extend it to the binary non-rigid particle mixtures.

The ARM aims to calculate the free energy difference

between two similar systems distinguished by two ex-

ternal potentials V0 and V1. For the investigation of

the depletion potential between two big spheres in a

solution of small spheres, the presence of the two big

spheres acts as an external potential of surrounding

small spheres. The external potential can be indicated

by the distance d between the two big spheres, and d0

and d1 indicate the distances between two big spheres

for the systems of V0 and V1, respectively. With the

corresponding partition functions of the two systems

being Q0 and Q1, the free-energy difference between

these two systems is given by

β△F ≡ βF1 − βF0

= − ln
Q1

Q0

= − ln
⟨f(β(V1 − V0))⟩0
⟨f(−β(V1 − V0))⟩1

, (2)

where f(x) = [1+exp(x)]−1 is the Fermi function and

β = 1/kBT .

For the hard sphere systems, equation (2) is sim-

plified into

β△F = − ln
N10

N01
, (3)

where N10 is the number of samples drawn out from

the N simulated samples, which are generated with

potential V0 where V1 is not infinite; and N01 is the

number of samples drawn out from N simulated sam-

ples, which are generated with potential V1 where V0 is

not infinite. During the MC simulation, with the two

big spheres fixed at the distance of d0, small spheres

are simulated according to the standard Metropolis

scheme. As it is ensured that there is no overlap be-

tween spheres in any pair, V0 is always zero. When the

system reaches equilibrium, N MC steps are used to

sample N10. After each MC step, we check whether or
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not there is any overlap between small spheres and big

spheres for the distance d1 of two big spheres. If there

is no overlap, then V1 = 0, and f(β(V1 − V0)) = 1,

and then N10 is added by one; otherwise, V1 = ∞,

and f(∞) = 0, and then N10 is added by nothing. A

similar process can be done to accumulate N01. With

the values of N10 and N01, the free-energy difference,

which is just the difference in depletion potential, can

be obtained from Eq. (3).

When the system is changed to non-rigid binary

mixtures, the calculating procedure is similar. The

main difference is that the external potential is no

longer zero or infinity, but a finite value. In each MC

step, V0 and V1 are calculated with new positions of

small spheres. Expression 2 can be evaluated from the

difference between V0 and V1 for small spheres, and

N10 (or N01) is not an integer, but a floating number.

2.2.Asakura Oosawa approximation

The results of depletion potential obtained by the

AO approximation are usually used to guide theoret-

ical or experimental results. In Ref. [26], the Virial

expansion approach has been developed for the cal-

culation of the depletion potential in soft repulsive-

sphere binary mixtures. When only the contribution

of the first-order term of the density is considered, the

Virial expansion approach gives the AO approxima-

tion. In the following, the AO approximation based

on Virial expansion is briefly described. More details

about this approach can be found in Ref. [26].

The depletion potential between two big spheres

immersed in a solvent of small spheres can be ex-

pressed in terms of the difference between one-body

direct correlation functions

βW (r) = C
(1)
b (r → ∞; [ ρb → 0, ρs])

− C
(1)
b (r; [ ρb → 0, ρs]) . (4)

The big spheres are assumed to be infinitely dilute in

the binary mixtures. The correlation function C
(1)
b of

big spheres under the limit of infinite dilution can be

obtained by means of Virial expansion as

−C
(1)
b (r; [ ρb → 0, ρs])

=

∫
dr′ρs(r

′)fbs(r − r′) +
1

2

∫
dr′dr′′ρs(r

′)ρs(r
′′)

×fbs(r − r′)fbs(r − r′′)fss(r
′ − r′′) + . . . , (5)

where fij(r) = 1 − exp[−βuij(r)] is the Mayer func-

tion in terms of the pair potential between particles i

and j. The density ρs(r) in Eq. (5) can be expanded

in terms of the bulk density ρs and the pair poten-

tial appearing in the Mayer function. Retaining only

the first-order contribution of the density on the right-

hand side of Eq. (5), and inserting the expression of

the correlation function into Eq. (4) we yield the de-

pletion potential between two big spheres in the AO

approximation as follows:

βW (AO)(r) = −ρs

∫
dr′fbs(r

′)fbs(r − r′). (6)

For hard-sphere binary mixtures, the above expres-

sion gives the simple geometric excluded volume be-

tween two big spheres induced by surrounding small

spheres.[22,28,34]

The depletion potential of AO approximation

can also be obtained readily by the ARM in MC

simulations.[41] During the MC simulations, the AO

approximation is realized by neglecting the direct pair

potential between small spheres. However, the pair

potential between small sphere and big sphere is still

considered.

3. Results and discussion

In this work, a fixed size ratio of the big spheres

and the small spheres, σbb/σss = 5, is considered,

and σss = 1 is chosen as a length unit which gives

σbs = σsb = 3. The energy parameters ϵij = ϵ for all

the cases are used. In our simulation, a canonical en-

semble is used by giving the number n of small spheres,

the volume of the simulated box, and the rescaled

temperature T ⋆ = kBT/ϵ = 1.0. Two big spheres

with a given distance are put into a box with sizes

Lx×Ly×Lz as an external potential of small spheres in

MC simulations. The average number density of small

spheres is defined as ρ̄s = n/V with V = LxLyLz.

Periodic boundary conditions are applied along three

directions. 2 × 104 MC steps are typically used to

equilibrate the systems and other 5×105 MC steps to

collect data.

First we examine the validity of our ARM by com-

paring our results with those from the Virial expan-

sion under the AO approximation. The depletion po-

tential of the AO approximation can be calculated by

the ARM in MC simulations through neglecting the

pair potential between small spheres. However, the

pair potential between small spheres and big spheres

is still considered. Though it is a non-physical proce-

dure, it is helpful to test the ARM because its results

can be compared with the reliable analytical results

under the AO approximation. Before presenting the
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results, we need to give a simple explanation to a ba-

sic concept that the bulk number density ρs is differ-

ent from the average number density ρ̄s.
[41] The bulk

density, which appears in expression (6) of the Virial

expansion, refers to the density where small spheres

are so far from the external field formed by the pres-

ence of the two big spheres that their density con-

figuration is not influenced. The average density is

convenient to be used in our simulations when the

simulated box is given. The effective volume to which

small spheres can have access is the total volumes sub-

tracted by the volume of the two big spheres and their

excluded volume to small spheres, so the bulk den-

sity is larger than the average density. Sometimes one

can modify the definition of the average density to re-

duce the discrepancy between the two densities, such

as ρ̄s = n/(V − 2Vb) with Vb = 4πR3
b/3 being the vol-

ume of the big sphere,[41] but the discrepancy still ex-

ists due to the existence of the excluded volume. For

a few average densities ρ̄s = 0.19, 0.381, 0.565, and

0.74, the corresponding bulk densities are estimated

to be ρs = 0.201, 0.402, 0.592, and 0.772, respectively,

in MC simulations.

The depletion potential βW (h) and the total ef-

fective potential βUtot(h) = βW (h) + βubb(h) be-

tween two big spheres induced by a solution of non-

interacting small spheres for n = 6, each as a functions

of the surface separation h = d − σbb of the two big

spheres, are presented in Fig. 1. The solid lines are

for the results obtained from Varial expansion of ex-

pression (6), and the symbols are for those obtained

from the ARM. From small to big potential depths,

the average densities are ρ̄s = 0.19, 0.381, 0.565, and

0.74, for MC simulations, and the corresponding bulk

densities are ρs = 0.201, 0.402, 0.592, and 0.772, re-

spectively, for the calculations in Eq. (6). In our simu-

lations, the number of small spheres varies from about

700 to 2800 for various number densities. The results

obtained by the two methods are in excellent agree-

ment with each other, and they are independent of

the densities. So far the ARM has been believed to be

a reliable method of calculating the depletion poten-

tial under AO approximation in the non-rigid binary

mixtures.

Fig. 1. (a) Depletion potentials and (b) total effective potentials for n = 6 between two big repulsive spheres with diameter

σbb = 5 induced by a solution of non-interacting small spheres with diameter σss = 1. The solid lines are for the results

obtained from Eq. (6), and the symbols are for the results obtained from the ARM of MC simulation. From small to big

potential depths, the average densities are ρ̄s = 0.19, 0.381, 0.565, and 0.74, for MC simulations, and the corresponding

bulk densities are ρs = 0.201, 0.402, 0.592, and 0.772, for the calculations in Eq. (6).

In order to check the validity of ARM further, we

implement ARM to compute the depletion potential

in the repulsive-sphere binary mixtures where the par-

ticles interact with each other through the pair poten-

tial in expression (1), and compare the results with

those obtained by MD simulation, Virial expansion

approach, and AO approximation. The depletion po-

tentials and the total effective potentials for n = 6

with various average densities, ρ̄s = 0.19, 0.381, and

0.74, are shown in Figs. 2 and 3, respectively. The

solid lines denote the results calculated with the ARM

by means of MC simulations, and the squares repre-
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sent the MD simulations from Ref. [26]. From Fig. 2,

we can see that the agreement is generally good for

all densities. This suggests that our ARM, as well as

MD simulation, can give accurate results within the

range of their statistical errors which depend on the

number of small spheres and the number of samples

used to collect data. In Figs. 2 and 3, the results of

the first-order (AO approximation) and second-order

Virial expansions are indicated by dot lines and dash

lines. The second-order Virial expansion can give rea-

sonable accuracy (see Figs. (a) and (b)) when the den-

sity is not high, but the accuracy becomes obviously

worse when the density increases. However, the AO

approximation can be used only for such a low density,

lower than 0.05.[26]

Fig. 2. Depletion potentials between two big repulsive spheres with n = 6 and diameter σbb = 5 induced by a

solution of interacting small spheres with diameter σss = 1 for three average densities ρ̄s = 0.19 (a), 0.381 (b), 0.74

(c). The solid lines, symbols, dash lines, and dot lines denote the depletion potential calculated with ARM, MD,

Virial expansion, and AO approximation, respectively.
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Fig. 3. Total effective potentials in the same situations as those in Fig. 2.

In Fig. 4, we present the total effective potentials

between two big spheres for softness n = 6 and 12,

and the hard-sphere case with the three densities of

ρ̄s = 0.19, 0.565, and 0.74. The potential well is an

indicative characteristic of the total effective poten-

tial after including depletion contribution as it acts

as a deterministic role in determining the phase be-

haviours of the mixture. At all densities, we can see

that the potential wells become narrow monotonically

as the softness parameter increases. For a low den-

sity of ρ̄s = 0.19, the potential well of the hard-sphere

case has the largest depth among the three cases, and

that of n = 6 has the smallest depth (see Fig. 4(a)).

This is consistent with the prediction of AO approx-

imation (see the inset). However, at a higher density

of ρ̄s = 0.565, the situation is inverted. The depth of

the potential well of n = 6 is the largest, and that for

the hard-sphere case is the smallest (see Fig. 4(b)).

This property can be explained by the competition

between the pure depletion part and the direct po-

tential part of the total effective potential. For the

case of low density, the particles are separated far

away from each other, and they cannot feel the long

range part of their interactions strongly. The deple-

tion interaction is mainly from the contribution of the

hard-core interaction, and therefore, it is hardly influ-

enced by the direct potential. However, after adding

the direct potential, the depth of the potential well

of βUtot(h) is reduced significantly by the long-range

repulsive part of n = 6, and is invariant for the case

of hard sphere. When the density increases, the con-

tribution of the long-range potential part of n = 6

to the depletion potential is increased dramatically as

the non-additive distances between the small spheres

and the big spheres, and separations among the small

spheres, become larger. In other words, for the same

density, the interacting range of the depletion poten-

tial of n = 6 in Fig. 4(c) has extended toward closer

distance between the two big spheres with larger mag-

nitude than that of hard sphere in Fig. 4(c). After

adding the direct potential, βUtot(h) of n = 6 still has

much deeper potential well than that of hard-sphere

case, and that of n = 12 is intermediate between the

two formers. In addition, the minimal positions of the

potential of n = 6 and n = 12 are shifted from h > 0

at a low density of ρ̄s = 0.19 to h < 0 at a high density

of ρ̄s = 0.74. The shift of the minimal position is due

to the dominance of the depletion potential over the

direct potential, too.

As the depletion effect increases with density in-

creasing, the depth becomes deeper, and the minimal

position moves toward closer distance. To obtain a

quantitative knowledge of the change in the depth of

the potential well, we estimate the value of the depth

for varying density, and present the results in Fig. 5.

The symbols of squares, crosses, and triangles repre-

sent the results of n = 6, n = 12, and the hard-sphere

cases, respectively. The thin solid lines are used to

connect these points to guide eyes. For comparison,

the results under the AO approximation are also given:

n = 6 (solid lines), n = 12 (dash lines), and hard-

sphere case (dot lines). For the hard-sphere case, the

depth of the potential well is nearly a linear function

of density while it is an exact linear function under

the AO approximation. When the softness parame-

ter decreases, the linear relation is broken. The depth

of n = 6 changes from smaller to larger than that of

hard-sphere case at ρ̄s ≃ 0.4 (see the enlarged part in

the inset of Fig. 5), and then at high densities, the

depth for n = 6 increases much faster than the two

others with density increasing. These differences are

underestimated in the AO approximation.
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Fig. 4. Total effective potentials between two big spheres for softness n = 6 (dash lines), n = 12 (dot-dash lines), and

hard-sphere case (solid lines). Three nubmer densities of small spheres are presented ρ̄s = 0.19 (a), 0.565 (b), 0.74 (c). The

thin solid lines denote the direct pair potentials of the two big spheres for n = 6 and n = 12 (steeper one). Insets show the

corresponding total effective potentials under AO approximation.

Fig. 5. Attractive potential-well depths of the total effec-

tive potential between two big spheres, each as a function

of density, for n = 6 (squares), n = 12 (crosses), and hard-

sphere case (triangles). The corresponding results of AO

approximation are shown for n = 6 (solid lines), 12 (dash

lines), and hard-sphere case (dot lines). The inset is the

enlarged part for small values of the depth.

4. Conclusion

In this work, the depletion interactions between

two big spheres, interacting with the repulsive part

of the Lennard–Jones pair potential, are investigated

with the acceptance ratio method by means of MC

simulation. Three softness parameters of the direct

pair potential n = 6, n = 12, and n = ∞ (HS case) are

considered. Our results from the ARM are compared

with those obtained by AO approximation, second-

order Virial expansion theory, and MD simulations.

The comparisons show that our ARM can give an

accurate depletion potential of this non-rigid particle

system as well as MD simulations. The total effective

potential has a potential well being the same as that

with including of the depletion potential induced by

surrounding small spheres. The depth of the poten-

tial well depends on the softness of the direct potential

among these particles (including big spheres and small

spheres) and the density of small spheres. For hard-
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sphere case, the relationship between potential depth

and density is nearly linear. However, for n = 6, the

potential depth increases much faster than that of the

hard-sphere case at a high density region. It is sug-

gested that the depletion effect in the binary mixtures

with softer and longer-range direct pair potential is

much larger. This is consistent with the conclusions

in the charged colloidal mixtures.[46] When the effec-

tive one-component method is used to examine the

phase behaviour of the binary non-rigid mixtures, the

calculation of the depletion potential is crucial. The

ARM is an efficient method of computing an accurate

depletion potential of non-rigid colloidal mixtures.
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